Antagonizing midkine accelerates fracture healing in mice by enhanced bone formation in the fracture callus

نویسندگان

  • Melanie Haffner-Luntzer
  • Aline Heilmann
  • Anna Elise Rapp
  • Robin Roessler
  • Thorsten Schinke
  • Michael Amling
  • Anita Ignatius
  • Astrid Liedert
چکیده

BACKGROUND AND PURPOSE Previous findings suggest that the growth and differentiation factor midkine (Mdk) is a negative regulator of osteoblast activity and bone formation, thereby raising the possibility that a specific Mdk antagonist might improve bone formation during fracture healing. EXPERIMENTAL APPROACH In the present study, we investigated the effects of a monoclonal anti-Mdk antibody (Mdk-Ab) on bone healing using a standardized femur osteotomy model in mice. Additional in vitro experiments using chondroprogenitor and preosteoblastic cells were conducted to analyse the effects of recombinant Mdk and Mdk-Ab on differentiation markers and potential binding partners in these cells. KEY RESULTS We demonstrated that treatment with Mdk-Ab accelerated bone healing in mice based on increased bone formation in the fracture callus. In vitro experiments using preosteoblastic cells showed that Mdk-Ab treatment abolished the Mdk-induced negative effects on the expression of osteogenic markers and Wnt/β-catenin target proteins, whereas the differentiation of chondroprogenitor cells was unaffected. Phosphorylation analyses revealed an important role for the low-density lipoproteinLDL receptor-related protein 6 in Mdk signalling in osteoblasts. CONCLUSIONS AND IMPLICATIONS We conclude that Mdk-Ab treatment may be a potential novel therapeutic strategy to enhance fracture healing in patients with orthopaedic complications such as delayed healing or non-union formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Midkine Augments Osteoporotic Fracture Healing

The heparin-binding growth and differentiation factor midkine (Mdk) is proposed to negatively regulate osteoblast activity and bone formation in the adult skeleton. As Mdk-deficient mice were protected from ovariectomy (OVX)-induced bone loss, this factor may also play a role in the pathogenesis of postmenopausal osteoporosis. We have previously demonstrated that Mdk negatively influences bone ...

متن کامل

Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment.

Fracture healing in diabetic individuals and in animal models of diabetes is impaired. To investigate mechanisms by which diabetes may affect fracture healing we focused on the transition from cartilage to bone, a midpoint in the fracture healing process. Femoral fractures were induced in mice rendered diabetic by multiple low dose streptozotocin treatment and compared to matching normoglycemic...

متن کامل

Loss of Smad3 gives rise to poor soft callus formation and accelerates early fracture healing.

Smad3 is an intracellular signaling molecule in the transforming growth factor β (TGF-β) pathway that serves as a regulator of chondrogenesis and osteogenesis. To investigate the role of the TGF-β/Smad3 signaling in the process of fracture healing, an open fracture was introduced in mouse tibiae, and the histology of the healing process was compared between wild-type (WT) and Smad3-null (KO) mi...

متن کامل

PTH 1-34 Ameliorates the Osteopenia and Delayed Healing of Stabilized Tibia Fracture in Mice with Achondroplasia Resulting from Gain-Of-Function Mutation of FGFR3

Bone fracture healing is processed through multiple stages including the cartilaginous callus formation and its transition to bony callus. FGFR3 negatively regulates chondrogenesis and enhances osteogenesis during skeleton development. We previously found in mice carrying gain-of-function mutation of FGFR3 that FGFR3 delays the healing of un-stabilized fracture that heals mainly through endocho...

متن کامل

Midkine-Deficiency Delays Chondrogenesis during the Early Phase of Fracture Healing in Mice

The growth and differentiation factor midkine (Mdk) plays an important role in bone development and remodeling. Mdk-deficient mice display a high bone mass phenotype when aged 12 and 18 months. Furthermore, Mdk has been identified as a negative regulator of mechanically induced bone formation and it induces pro-chondrogenic, pro-angiogenic and pro-inflammatory effects. Together with the finding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2016